On the Spectral Norm of Gaussian Random Matrices
نویسنده
چکیده
Let X be a d×d symmetric random matrix with independent but non-identically distributed Gaussian entries. It has been conjectured by Lata la that the spectral norm of X is always of the same order as the largest Euclidean norm of its rows. A positive resolution of this conjecture would provide a sharp understanding of the probabilistic mechanisms that control the spectral norm of inhomogeneous Gaussian random matrices. This paper establishes the conjecture up to a dimensional factor of order √ log log d. Moreover, dimensionfree bounds are developed that are optimal to leading order and that establish the conjecture in special cases. The proofs of these results shed significant light on the geometry of the underlying Gaussian processes.
منابع مشابه
Cartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کاملStructured Random Matrices
Random matrix theory is a well-developed area of probability theory that has numerous connections with other areas of mathematics and its applications. Much of the literature in this area is concerned with matrices that possess many exact or approximate symmetries, such as matrices with i.i.d. entries, for which precise analytic results and limit theorems are available. Much less well understoo...
متن کاملOn Gaussian comparison inequality and its application to spectral analysis of large random matrices
Recently, Chernozhukov, Chetverikov, and Kato [Ann. Statist. 42 (2014) 1564–1597] developed a new Gaussian comparison inequality for approximating the suprema of empirical processes. This paper exploits this technique to devise sharp inference on spectra of large random matrices. In particular, we show that two long-standing problems in random matrix theory can be solved: (i) simple bootstrap i...
متن کاملRobustness Properties of Dimensionality Reduction with Gaussian Random Matrices
In this paper we study the robustness properties of dimensionality reduction with Gaussian random matrices having arbitrarily erased rows. We first study the robustness property against erasure for the almost norm preservation property of Gaussian random matrices by obtaining the optimal estimate of the erasure ratio for a small given norm distortion rate. As a consequence, we establish the rob...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کامل